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Edge waves over a shelf: full linear theory 
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(Received 29 November 1983) 

Edge-wave solutions to the linearized shallow-water equations for water waves are 
well known for a variety of bottom topographies. The only explicit solution using 
the full linearized theory describes edge waves over a uniformly sloping beach, 
although the existence of such waves has been established for a wide class of bottom 
geometries. I n  this paper the full linearized theory is used to derive the properties 
of edge waves over a shelf. I n  particular, curves are presented showing the variation 
of frequency with wavenumber along the shelf, together with some mode shapes for 
a particular shelf geometry. 

1. Introduction 
The best-known and oldest example of a wave that can propagate unchanged along 

a straight coastline is that in water of constant bottom slope t a n a  discovered by 
Stokes (1846). The longshore wavenumber 1 is related to the wave frequency (T by 
r2g-'( = K )  = Zsina. The amplitude of the wave decreases exponentially with 
distance out to sea, so that  the energy is effectively trapped near the shoreline. Ursell 
(1952) provided a class of such edge waves of which the Stokes wave is just the first 
and whose frequencies are given by K = Isin{Zn+ 1)a (n = 0, 1, ...). Roseau (1958), 
apparently unaware of Ursell's work, developed a systematic technique for con- 
structing edge-wave solutions over a uniformly sloping bottom, using Laplace-type 
integrals and functional equations. I n  addition to the bounded edge waves of Ursell, 
he constructed edge waves having frequencies satisfying K = 1 sin 2na (n = 1,2,  . . .), 
which are characterized by potentials having logarithmic singularities a t  the inter- 
section of the mean free surface and the bottom. Edge-wave solutions possessing 
higher-order singularities were also constructed by Roseau. 

The Ursell edge waves remain the only explicit bounded solutions based on the full 
linearized theory, although the existence of such waves in a wide class of problems 
was shown by Jones (1953). For example, he showed there exists a t  least one edge 
wave on the horizontal part of a submerged rectangular protuberance projecting 
outwards from the side of a vertical wall, in either finite or infinite depth of water. 
Furthermore, the proof is independent of the depth, size, or shape of the protuberance, 
provided that i t  is submerged. In  particular, using symmetry arguments, it  follows 
that there exist waves that are trapped over the top of a submerged cylinder of any 
radius in deep water and indeed over the top of any symmetric ridge on the sea bed. 
The case of trapped waves over the top of a submerged circular cylinder was studied 
separately by Ursell (1951), who showed that such trapped waves exist, at least for 
sufficiently small cylinders. 

Grimshaw (1974) considered the lowest edge-wave mode, where both 1 and K+O 
together, and obtained upper and lower bounds for the dispersion relation between 
K and 1 for a class of bottom profiles in which the water depth approaches a constant 
value a t  large distances from the coast. 
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FIQURE 1. Dispersion relations for edge waves on a plane beach of slope tana:  (a) shallow-water 
theory due t o  Eckert (1951), ( b )  full linear theory due to Ursell (1952). 

If the shallow-water approximation is employed, whereby Kh 6 1, where h is the 
depth of the bottom, explicit solutions are possible for a variety of bottom 
topographies. For example, for a uniformly sloping bottom of fixed slope a, Eckart 
(1951) showed that, for either 1 or K fixed, there exists an inJinite set of edge wave 
modes satisfying 

K = ( 2 n + l ) Z t a n a  ( n = 0 , 1 , 2  ,... ), (1.1) 

a result that agrees with Ursell’s edge waves as a+O. However, Ursell’s full linear 
theory predicts a Jinite number of modes given by the greatest integer contained in 
t + 7~/4a. The situation is illustrated in figure 1. 

The problem considered here is that  of edge waves travelling along a submerged 
horizontal shelf bounded on one side by a vertical wall extending through the free 
surface, and on the other by a vertical drop from the shelf to  a deeper region of con- 
stant water depth extending horizontally indefinitely. The shallow-water dispersion 
relation for edge-wave modes for this problem has been extensively studied by 
Snodgrass, Munk & Miller (1962), Summerfield (1972) and Longuet-Higgins (1967), 
and i t  can be shown that,  for a fixed geometry, the number of modes increases 
indefinitely with increasing K. Here the problem is considered using both approximate 
theories and also full linear theory. One question which immediately arises is whether 
the number of edge-wave modes is finite or infinite for given shelf geometry when 
a more accurate full linear theory is used. 

The problem is considered in stages. I n  $ 2  the usual linearized equations and 
boundary conditions to be satisfied by the velocity potential are presented, on the 
assumption of an inviscid incompressible irrotational fluid. The simple shallow-water 
theory is reproduced in 93, showing how the number of modes increases with 
increasing frequency. I n  $4  a shallow-deep approximation is employed in which the 
shallow-water solution valid over the shelf is matched to a deep-water solution 
extending out to  sea where the linear infinite-depth solution applies. The matching 
takes place via an intermediate region in the vicinity of the edge of the shelf. The 
technique is identical with that used by Tuck (1980) and Newman, Sortland & Vinje 
(1983) for solving similar problems. A dispersion relation is derived connecting Z and 
K ,  from which the edge-wave modes can be computed easily. It turns out that  in 
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contrast with the shallow-water solutions the number of edge-wave modes for a given 
geometry does not increase indefinitely with frequency, but has a maximum with just 
a single edge-wave mode a t  both large and small frequencies. 

Neither of these approximate solutions is valid for Kh + 1, and in $ 5  the full linear 
equations are considered, and by matching appropriate eigenfunctions across the edge 
of the shelf a homogeneous infinite system of equations is obtained for the coefficients 
in the edge-wave eigenfunction expansion. Edge-wave modes correspond to the 
vanishing of the determinant of the system. Computation of the zeros of this infinite 
determinant is facilitated by the known approximate solutions derived in $9 3 and 
4 and also by a simple approximate variational approach to an equivalent integral 
equation. 

Confirmation of the number of edge-wave modes is provided by the work of Jones 
(1953), from which upper and lower bounds on the number of modes to be expected 
for particular values of the parameters can be deduced. It is found that, on the full 
linear theory also, the number of edge-wave solutions is bounded for a given geometry 
as K varics, in contrast with the shallow-water approximation. 

Curves are presented showing the variation of longshore wavenumber with 
wavc frequency for the edge-wave modes on both the approximate and full linear 
theories. Typical surface elevations of thesc latter modes are also presented. 

2. Formulation 
Cartesian axes are choscn with the mean free surface the (x,z)-plane, z being 

directed along the straight coastlinc and y vertically downwards as shown in figure 
2. The shallower water is of depth h, above the horizontal shelf of width a ;  the deeper 
water is of depth h,. 

On the basis of the usual assumptions of an inviscid incompressible fluid there exists 
a velocity potential @(x, y, z ,  t ) ,  which, assuming the linear theory of irrotational 
surface waves, satisfies 

a 2 ~ i  a w  a*@ 
a x 2  ayz  a z 2  
-+-+-- = 0 in 8, the water region, 

with boundary conditions 

( 2 . 3 ~ )  

(2.3h) 

on x = 0, 0 < y < h,, ( 2 . 4 ~ )  

on x = a ,  h, < y < h,. (2.413) 

Since we are concerned with progressive waves that are periodic in the longshore 

( 2 . 5 )  

aQi - = o  { 
ax 

direction, we write 

so that I$ satisfies 
@(x, y, z ,  t )  = $(x ,  y) cos (Zz-Vt) .  

(2.6) 
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FIGURE 2. Definition sketch. 

with 

~ + K # = o  on y = 0 ,  X > O ,  
aY 

where K = r 2 / g .  
Conditions (2.3) and (2.4) are also satisfied by #(x, y). 
For edge-wave solutions, we assume 

q5,V#+0 as x + m .  

The aim is to find a dispersion relation between the wave frequency u and the 
long-shore wavenumber 1, such that non-trivial solutions to the above equations exist. 

3. The shallow-water approximation 
A number of authors have solved the problem under the assumption Kht + 1 

(i = 1,2),  so that the wavelength is large compared with each depth. With this 
assumption the solution for #(x, y )  is a potential $(x) ( = #(x, 0)) given by 

cospx 
cospa $(XI = $I(., = ~ (0 < y < h,, 0 < x < a), 

$(x) = $ (5) = e-Q(z-a) (0 < y < h2, z > a) ,  

p = ( k ? - P ) i ,  q = (12-k;) i  (3.3) 

K =  kihi (i = 1,2).  (3.4) 

p tanpa = p2q, where ,u2 = h,/h,. (3.5) 

(3.2) 
where 

and 

In addition, p and q are related by 

Full details of the solution procedure may be found in Snodgrass et al. (1962). 
The required conditions on $, are also satisfied if 1 > k,, but in this case the left-hand 

side of (3.5) becomes - p  tanhpa, which is negative for p $: 0, so that  no edgc-wavc 
solution of (3.5) with q > 0 exists. It follows from (3.3) and (3.4) that 

k, < 1 < k, ,  h, > h, (3.61 

are necessary conditions for edge-wave solutions on the basis of shallow-water theory. 
I n  figure 3 we sketch pa against qa as given by the relation (3.5) for a particular 



Edge waties over a shelf: full linear theory 

2 .o 

1.5 

(k:-k:)f  h ,  

83 

I I I I I 

- 
/ 

,/' 

Pa 
FIGURE 3. Sketch of the relationship between pa and pa as given by (3.5) for p2 = 10. The circular 

arcs are typical lines of constant frequency (see (3.8)). 

p2. Notice that all edge-wave solutions have values of the offshore wavenumber pa 
in the ranges 

Now, from (3.3) 

(n-1)n < p a  < (n-+)rc (n = 1,2, . . , ) .  (3.7) 

@2+q2)a2 = (k:-k:)aZ, (3.8) 

so that for a fixed frequency, possible solutions lie along circles in the @, p)-plane (see 
figure 3). It is evident that there are just n edge-wave solutions when 

(n--l)rc < (k;L-k$a < nn. 
From (3.4) 

(k t -k i )h:  = Kh,(l-p-'), 

(3.9) 

(3.10) 
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FIGURE 5 .  The shallow-water dispersion relation for ,uz = LO, a/h,  = 10. 

and figure 4 shows the variation of (k2,-ki) i  h, with Kh, for two values of p2. The 
precise number of modes for a given Kh, follows from figure 4 and (3.9). To determine 
the dispersion relation between lh, and Kh,, p and q are eliminated from (3.5) using 
(3.3) and (3.4). The result is shown in figure 5. It can be seen from figure 5 that, 
although the number of edge-wave modes increases indefinitely with Kh,, so does the 
longshore wavenumber lh,,, whilst for a fixed lh, there are only a finite number of 
modes, in contrast with Eckart’s shallow-water dispersion relation (1 .1 )  for a 
uniformly sloping beach. Further details of the shallow-water theory, together with 
diagrams showing the surface profiles of the edge-wave modes, are to be found in 
Snodgrass et al. (1962). A careful consideration of the validity of linear shallow-water 
theory, especially in the vicinity of the shelf, is given by Tuck (1976). 

The validity of the results for moderate or large Kh must be regarded as doubtful, 
as the basic assumption of shallow-water theory is no longer satisfied. 

4. The shallow/deep approximation 
I n  this section the assumption of shailow-water theory in the region x > a is 

relaxed, and the full linear theory used there. I n  fact, for simplicity it will be assumed 
that Kh, < 1, Kh, + 1, with similar assumptions for 1. Thus the shallow-water 
solution in the region over the shelf is matched with a full linear solution for infinitely 
deep water, through an intermediate solution valid in a region close to  the edge of 
the shelf. A similar matching technique has been employed by Tuck (1980) and 
Newman et al. (1983) for related problems. The method of the latter is followed closely 
here. 

Two outer regions are considered where wave effects are important and one inner 



Edge waves over a shelf: full linear theory 85 

region where they are not. In  the internal outer region 0 < y < h,, 0 < x < a the 
shallow-water solution 

cos px 
~ 1 = C O S p a  

is valid. 
The inner region is x-a = O(h,), y = O(h,) ,  a t  the vicinity of the edge of the shelf. 

The use of appropriate inner coordinates X = (x-a)/h,, Y = y / h ,  then shows that 
the potential in the inner region satisfies 

Yx,+ Yyy = 0 in the fluid, (4.1) 

( Y = O ,  - o o < X < c o ) ,  (4.2) 

( ( Y =  1, X < O ) ,  (4.3) 
Yy = 0 

Yx=O ( X = O ,  Y > l ) ,  (4.4) 

where terms involving Kh,, Zh, have been neglected. Thus in the inner region the 
problem reduces to the strictly two-dimensional flow from X = - 00 between two 
parallel rigid walls out into the quarter-plane 9 > 0, Y > 1. The solution is given 
by Newman et al. (1983) using the conformal mapping 

2 1 (1 -wp- l  
n: n: ( l -w) j+l  

z ( = X + i Y )  =-(i-w):+-ln 

to transform the fluid region in the complex z-plane into the lower half of the complex 
w-plane. I n  particular, they show that 

+ C  as R =  ( X 2 + Y 2 ) ~ + ~ ,  for X>O,  Y > 1, ( 4 . 5 ~ )  
n: 

whilst 
Y - rn{X-27~-~(1-ln2)}+C as X+-co for 0 < Y < 1, (4.5b) 

where m and C are constants, m being a mass flux. The limit (4.5b) takes the solution 
into the internal outer region, where it must be matched with the shallow-water 
solution (3.9). Thus matching potentials and mass flux at x z a gives 

2m 
1 = --(1-h2)+C, 

n: 

-p tanpa = m/h,. I 
To complete the solution, the logarithmic behaviour of the inner solution as R+ 00 

needs to be matched to an appropriate solution in an outer external region. This 
outer region is the quarter-plane x > a, y > 0, where the potential satisfies conditions 
(2.6)-( 2.8) together with 

(4.7) 

#,V#+O as y+co, (4.8) 

(4.9) 
2m #-T logr as r = { (x -u )2+y2) :+0 ,  

the latter condition ensuring that the solution matches with the inner solution as 
R+W. 
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The required solution is given in Wehausen & Laitone (1960, p. 547) in the form 

where 
r' = { (2- a), + P);, 

r = {(x-a)2+y2)1, 

K = Zcosa, 

(4.11) 

and KO is the modified Bessel function. It follows that 

2m 
$(x,y) = -{(InKr+(a-n)cota+y-ln(2cosa)}+o(l)  as r + 0 ,  (4.12) 

n 

where y = 0.5772 ... is Euler's constant. 

constant terms match, provided that 
A comparison of (4.5a) and (4.12) shows that both the logarithmic terms and the 

+(a-n)cota+y . 
= %{ln% n ncosa I (4.13) 

It follows from (4.6) and (4.13) that 

(4.14) 
2Kh, 

1-y-ln-+(n-a)cota+ln(cosa) 
n 

Also, since under this approximation E ,  = K and k: h, = K, we have 

(ph,),  = Kh, - (Zh,)2 = Kh, - (Kh, sec a),, (4.15) 

whilst, since I%, < 1 < k,, then, using (4.11), 

Rh, < 1 ,  Zh, < C O S ~ .  (4.16) 

Perhaps the simplest method of determining the number of solutions of (4.14) and 
(4.15) satisfying (4.16) is to fix a, h, and R. Then (4.14) is just 

ph, tanpa = ?&(a), 
where 

sin a 
A sin a + (R - a) cos a + sin a In (cos a) f @ ,  = 

and 
2Kh, 

A = l-y-ln- > 0, n 

(4.17) 

(4.18) 

since 
y <  1 and Kh,< 1 .  

As a increases from zero to in, f ( a )  increases from zero to + co a t  the only value 
of a in the range for which the denominator of (4.18) vanishes, and then from - co 
to zero as a continues up to in. 

A sketch of the roots of (4.17) is sufficient to deduce thatph, increases monotonically 
from (n- 1)nhJa to nnh,/a (n = 1,2, ...) as a increases from zero to in. But (4.15) 
shows that ph, decreases monotonically from (Kh, - (Kh,),); to zero as a increases from 
zero to c0s-l Kh, < in. Each crossing point gives an edge-wave solution, and it follows 
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FIGURE 6. The shallow/deep dispersion relation for a/h,  = 10. 

that there are precisely n edge-wave solutions if 

xh nnh, 
a a 

( n - l ) l <  (Kh,-(Kh,)')t < __ (4.19) 

This result is precisely the same as (3.9) for the shallow-water approximation, but 
now Kh, < 1 and the variation of (Kh,-(Kh,)2): with Kh,, corresponding to  (3.10) is 
given by the semicircle in figure 4. Just  as for the shallow-water approximation 
the permissible values for pa satisfy (3.7). 

The precise number of edge-wave solutions for a given value of Kh, can be 
determined from figure 4 and (4.19). I n  particular it can be seen that the maximum 
number of modes for a given geometry, occurring when Kh, = +, is given by the 
greatest integer contained in 1 +a/2xh, whilst for Khl+O, 1 there is just a single 
made. 

The variation of Zh, with Kh, can be obtained from computations based on (4.15) 
and (4.17). Curves showing this variation for a typical value of a/h,  are presented 
in figure 6. 

Once again results for Kh, - 1 must be treated with caution, since the shallow-water 
approximation requires Kh, + 1 .  However, for Kh, < 1 (4.19) shows that i t  is still 
possible to have a large number of modes provided that a/h,  % 1, a condition which 
is consistent with shallow-water theory. 

There is little difficulty in repeating the analysis of this section under the 
assumption Kh, = O(1)  instead of Kh, $- 1 .  All that is required is to modify the 
solution in the outer region so as to satisfy i3$/ay = 0 on y = h, instead of (4.8). This 
is readily available in, for example, Wehausen & Laitone (1960), but the isolation 
of the logarithmic singularity from the solution results in a less convenient form for 
the dispersion relation corresponding to (4.14), from which the number of edge-wave 
solutions is not readily deduced. Computations, however, confirm that in this case 
also (3.9) is satisfied and the number of edge-wave modes is finite for all frequencies. 
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The curve corresponding t o  the semicircle in figure 4 is determined from the relations 

(k? - k$ h = (Kh, - k; h;)t 

and 
K = k, tanh k, h,. 

Since K < k, i t  follows that 

(k; - k;)* h, < (Kh, - (Kh,)Z)i, 

showing that this curve would always lie inside the semicircle describing the 
shallow /deep case. 

5. Full linear theory 
The problem using the full linear theory in both water depths h, and h, can be 

approached using appropriate eigenfunction expansions as used by Miles (1967) and 
Grimshaw (1974). 

Let k, (i = 1,2)  be the only positive roots of the equations 

K = k, tanh k, hi (i = 1 , 2 )  (5.1) 

and let uin (i = 1,2,  n = 1,2,  . . .) be the infinite sequence of positive roots taken in 
ascending order of magnitude of the equations 

K+a,,tanainh, = 0 (i = 1,2) .  (5.2) 

(5.3) 

(5.4) 

(5.5) 

Define 

where 

and for n = 0 

$&) = LV;; COSuin(h,-y) (i = 1 ,2 ,  n = 1,2,  ...), 

N2 - - Ahi 1 - K-’ sin2 azn ht), 

+iO(Y) = Xi(Y) = &ll cash ki(hi-y), 

where uio = ik, and 
qo = $hi + K-l sinh2 ki h,}. 

Then the set {@,n(y)} (n  = 0 , 1 , 2 ,  ...) is orthonormal over (0, hi) with boundary 
conditions (2.7) on y = 0 and (2.3) on y = hi (see e.g. Wehausen & Laitone 1960, 5 16). 
Separate eigenfunctions can now be constructed appropriate to the regions 0 < x < a,  
0 < y < h,, and x: > a,  0 < y < h,. Thus 

(5.7) 

pin = (u;n+z2)1 (i = 1,2,  n = 1 ,2 ,  ...), 

p 20 = q = (z2-k;)k 

pi, = ip = i(k; - P)*, (5.9) 
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The constants Utn are just the coefficients in the expansion of the horizontal 
velocity U(y) across x = 0 , O  < y < h, in terms of appropriate eigenfunctions, and will 
be determined by matching both the potentials and U(y) across the interface. 

Note that (5.7) satisfies (2.3a), (2.4a), (2.6) and (2.7), whilst (5.8) satisfies (2 .3b ) ,  
(2.6), (2.7) and (2.8). Condition (2.4b) will be satisfied in the course of the matching 
procedure. 

There is no reason a t  this stage for choosing 1 < k,, but i t  will turn out that just 
as for the shallow-water approximation edge-wave solutions require p to be real. 

We define U ( y )  = a$/ax (x = a ,  0 < y < h2).  Then continuity of a$/ax requires 
that 

m 

Since the set {+ln(y)} is orthonormal over (0, h,) 

Multiplication of (5.10) by the orthonormal set {+2m(y ) }  and integration over (0, h,) 
gives 

00 hl 
U2m= n=o C. 'JlnCnm (=I 0 Ti(y)+zm(y)d?/) ( m = O j 1 , 2 , . . . ) ,  (5.13) 

whilst multiplication of (5.11) by {klm(y)} and integration over (0, h,) gives 

U1,p;~coth/3,,a = - Z UznP;:cmn ( m  = 0 , 1 , 2 ,  ... ). (5.14) 
n - 0  

Substitution of U,, from (5.13) into (5.14) now gives 
m 

U,,+ z A, ,  u,, = 0 (n = 0,1 ,2 ,  ... ), (5.15) 
m = o  

where 
m 

(5.16) Cmr Cnr A,, = P1, tanhp,, a E ___. 
r = o  P z r  

Alternatively, substitution of U,, from (5.14) into (5.13) gives 
m 

U,,+ Z B,, U,, = 0 ( n  = 0 , 1 , 2 ,  ... ), (5.17) 
m = o  

where 

(5.18) 
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The question of existence of edge waves is now one of finding solutions to either 

An alternative approach used by Grimshaw (1974) is to derive an integral equation 
of the infinite systems (5.15) or (5.17). 

for U(y) by substituting 

in (5.11). Since U(y) = 0 for h, < y < h, we obtain Jrl K(y, y’) ci(y’) dy’ = 0 (0 < y < hl), (5.19) 

where 
m a3 

K ( Y ~  Y’) = z Pc2 coth(Plna)$ln(Y) $ln(Y’) + z P 2  @ 2 n ( ~ )  @ z n ( ~ ’ ) .  (5.20) 
n = o  n=O 

It is now clear why p = (k:-Z2)i must be real. Multiply (5.19) by U(y) and integrate 
over (0, hl). The resulting double integral can be expressed as the sum of squares of 
single integrals if p = ip, corresponding to 1 > k,, and the only solution is U(y) = 0. 
Hence a necessary condition for edge-wave solutions on the full linear theory is 

k,  < 1 < kl, (5.21) 

This argument is due to Grimshaw (1974). 
A further approximate solution is provided by extending a procedure first used by 

Miles (1967) and repeated by Grimshaw (1974) in the present context. The kernel of 
the integral equation (5.19) is replaced by a new kernel h’,(y, y’) obtained by taking 
the sum in (5.20) from n = 1, the two terms corresponding to n = 0 now appearing 
on the right-hand side of (5.19). 

Then 

where 
W Y )  = “10 P-l cot paf,(y) - ti,, p-lf,(y), 

and, multiplying (5.23) by xt(y) and integrating over (0, hl) ,  

where 
Uio = ~ J l o p ~ l c o t p a ( f l , ~ i ) - U , o p ~ l C f , , ~ i )  (1: = 1,2),  

These last two equations are consistent provided that 

where 

(5.33) 

(5.23) 

(5.24) 

(5 .25 )  

Equation (5.24) must be satisfied for edge-wave solutions. Grimshaw shows t’hat there 
is a t  least one solution if 1 is small enough. Here a different approach is used. From 
(5 .22) ,  (5 .25 )  

(5.26) 

and in this form it  can be shown that Smn is (i) invariant to a scale transformation 
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of urn, and (ii) stationary with respect to small variations of u,(y) about its true value 
(see Miles 1967, equation (5.2)). 

A simple trial function is urn = x1 (m = 1,2) ,  which gives 

co c& 

r = 1 P z r .  
S,, = S,, = S,,coo, S,, = S,,c2,, and S;,l = C - 

Thus from (5.16) the condition (5.24) reduces simply to 

1 +Aoo = 0. (5.27) 

As with the other approximate solutions, the dispersion relation resulting from 
(5.12), (5.16) and (5.27) gives n solutions in the range given by the inequality (3.13). 
Unlike the previous approximations, (5.27) is valid a t  all frequencies and proves to 
be a most useful tool in obtaining an estimate of the wavenumber of an edge-wave 
mode before verification using the full linear theory. 

6.  Numerical procedure 
Consider the infinite system of homogeneous linear equations (5.15). For a finite 

system of order N of this form, non-trivial solutions exist if and only if the 
determinant AN = IS,, + A,,\ vanishes. It can be proved that an infinite system will 
behave in the same way, with a bounded solution where X,"= I U,,l < a, provided 
that X ~ _ , C ~ _ , l A n r n l  converges. This result was used by Ursell (1951) when 
considering trapping modes near a submerged circular cylinder. However, in the 
present work there is a singularity in the velocity field a t  the sharp corner on the 
edge of the shelf. Potential theory shows that near the corner U(y) - (h, -y)-i. The 
eigenfunction expansion (5.8) can describe this singularity provided that 
U,, = O(n-t). Thus there can be no non-trivial solution with X:,"-o lUlnl < co, and the 
abovementioned result is not applicable. Also, i t  is not possible to infer from the 
corresponding L, theory that all solutions of the homogeneous infinite system (5.15) 
satisfy Zzz0 lU,,lz < co. 

I n  the absence of an appropriate theory, extensive numerical checks were carried 
out to establish the validity of truncating the infinite system. Firstly, the convergence 
of the sequence {A,}  was investigated for arbitrary points in the parameter space, not 
necessarily corresponding to the zeros of A,. With the equations in the form (5.15) 
the sequence of determinants did not appear to converge as N +  co. However, when 
each row of the matrix was scaled by the factor (1  + Ann)-,, the coefficient of U,, in 
(5.15), which had the effect of dividing A ,  by IIf-,(l +A,,) ,  the modified sequence 
of determinants did converge. Clearly this procedure affects neither the location of 
the zeros of AN nor the solution of the truncated system. 

The convergence of the sequence of values of lh, corresponding to the zeros of A ,  
was also checked. These were located by systematically searching the parameter space 
using known approximate solutions as a guide. The procedure adopted was to fix the 
values of p2, a/h,, and Kh, and to  evaluate A N  for increasing values of lh, until a 
zero was found. Once a zero of A ,  had been located, and checked by taking larger 
values of N ,  the solution of the system (5.15) can be determined. It was found that 
the expected behaviour I Ul,l a nf was accurately reproduced, and that successive 
truncations gave a surface profile that  changed very little indeed. A value of N as 
low as 5 gave accurate results in most cases. 

I n  addition to the truncation procedure for the infinite system, careful consideration 
must also be given to the summation of the series in (5.16). From (5.12) i t  can be 
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FIGURE 

I 

I 

Kh 1 

0 

5 

7. Bounds on the longshore wavenumber (indicated by the shaded 
as given by the inequality (6.4) for p2 = 10, a/h, = 10. 

region) 

Ih I 
FIGURE 8. The full linear dispersion relation for p2 = 10, a/h, = 10. 

seen that each coefficient c,, has a factor a:m - ain in the denominator. Now for large 
n, at, - nn/hi, and so the largest terms in the sum will occur when r = p2n,  p2m. The 
summation must therefore be carried out well beyond the term corresponding to 
r' = maxb2m,  p2n}.  I n  practice this meant summing to  about 4r' terms to obtain 
satisfactory convergence. 
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The search of the parameter space for zeros of the determinant was helped 
considerably by the work of Jones (1953), who proved the existence of edge-wave 
solutions in a wide class of problems, including the present geometry. A direct 
application of his theorems 1’ and 3’ shows that there are precisely n edge-wave 
solutions when 

I 

v 

and either n- 1 or n solutions when 

I 

In fact the numerical results confirm that, as for the approximate solutions presented 
in 993 and 4, there are exactly n edge-wave solutions when 

I 

Using the exact equations (5 .1) ,  the expression (k:-ki)+h, is plotted against Kh, in 
figure 4 for two values of ,u2. The curves possess maxima, showing that there are only 
a finite number of possible modes. I n  particular, there can be only a single mode at 
high and low frequencies. For a given shelf width alh,, the exact number of modes 
that exist for a given value of Kh, can be read off using the inequalities (6.3). 

In  addition to  the inequalities (6.1) and (6.2), Jones shows that for the nth mode 
the longshore wavenumber I must lie in the range 

1 2 R 2  R2 
k : - (n -5 )  - < l2  < k : - ( n - l ) 2 -  

a2 a2 
4-2 
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or 
7t 7t 

( n - 1 ) - c p  a c (n-+)--, a 

in agreement with (3.15) derived using the approximate theories. These bounds on 
1 are drawn in figure 7 for a particular geometry, a case where there are a maximum 
of three modes. The dashed lines indicate the overall bounds imposed by the 
requirements that  p and q are both real. The actual dispersion relation for this case, 
determined by locating the zeros of the determinant of 6,,+A,,, is drawn in 
figure 8. Comparison of this figure with figure 5 shows that, not only does the full 
linear theory predict only a finite number of edge wave modes a t  all frequencies, but 
also the shape of the dispersion curves differs appreciably from that given by shallow- 
water theory. 

Surface profiles are given in figure 9 for a particular geometry a t  each of six 
frequencies. All the possible modes a t  each frequency are shown. Each profile has been 
normalized to take the same value a t  the shelf edge (x = a) .  It is interesting to note 
that the fundamental mode (which exists a t  all frequencies) has the largest amplitude 
throughout, suggesting that this will be the dominant mode if such edge waves were 
to be excited through nonlinear interactions by waves incident from the deep water. 
This is the behaviour found by Guza & Davis (1974) when considering edge-wave 
excitation on a sloping beach. 

7. Conclusion 
The existence of edge-wave modes on a horizontal shelf adjoining a straight 

coastline has been investigated. Using a full linear theory i t  has been shown that only 
a finite number of modes are possible a t  all frequencies. For sufficiently low or high 
frequencies there exists only one mode, with a single maximum in the number of 
modes a t  an intermediate frequency. This behaviour is in contrast with previously 
known shallow-water theory, which predicts that the number of modes will 
increase indefinitely with increasing frequency. 

Attention has been drawn to the work of Jones (1953), which, for a fixed geometry, 
predicts the number of modes that may be excited at any given frequency. For certain 
ranges of the frequency, Jones’ theory only predicts to within one the number of 
possible modes, whilst over the remaining ranges the exact number is predicted (see 
the inequalities (6.1) and (6.2)). However, the numerical evidence presented here 
suggests that the exact number of modes may be predicted at all frequencies using 
the inequality (6.3). This inequality is in agreement with shallow-water theory and 
with a new approximate theory which assumes shallow water above the shelf but 
infinitely deep water elsewhere. These theories enable the character of the solution 
a t  the extremes of the outer depth to be assessed. The dispersion relation for the full 
linear theory can be calculated by locating the zeros of an infinite determinant. This 
task is made relatively straightforward, as the number of modes a t  a given frequency 
is known, whilst bounds for the longshore wavenumber 1 are given by the inequality 
(6.4). The two approximate theories provide useful checks on the computations in 
certain limiting cases, while the approximation leading to (5.27) turns out to be 
particularly useful. 

Long waves trapped on a continental shelf, which can be approximated by the 
rectangular geometry considered in the present work, have been observed by 
Snodgrass et al. (1962). It was these observations that motivated their original 
derivation of the shallow-water theory described in the present $3. For such 
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oceanographic scales shallow-water theory provides an adequate description of the 
motion. There have been many observations of short edge waves on a sloping beach 
(see e.g. Huntley & Bowen 1973). However, the authors are not aware of any 
observations of short waves involving a bottom geometry that is approximately 
rectangular and where the present full linear theory would be applicable. 

P. McIver is supported by the Science and Engineering Research Council, Marine 
Technology Directorate, under grant GR/B/7672.0. 
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